JOUHENAL O COMPUTATIONAL PHYSICS §17, 230-258 (195}

A Second-Order Description of Shock Structure

1. M. Reise anp L. C. Woobps

Mathemarical Institure, University of Oxford, 24-29 St Giles, Oxford QX1 LB, United Kingdom

F. ). P. Tuiver

Centre d'Emmdes o de Recherehes de Toulouse, ONERA, Départemenr d' Aérothermodynamigue BP 4025,
31055 Towlouse Cedex, France

AND

S. M. Canniil

Laboratoive d' Energetiqie Moléculaire et Macroscopique, Combustion, UPR 288 CNRS, Ecole Centrale Paris, 92295 Chdtenay-Malubry, France

Received May X, 1993; revised November 3, 1993

The structure of gas-dynamic shock waves is of interest in hypey-
sonic flow studies and also constitutes a straightforward test for
competing kinetic theories. The description of the shock profiles
may be obtained from a second-order theory in the Knudsen num-
ber. The BGK approximation to the Bolizmann equation introduces
additional terms in the transport of momentum and energy. These
relations, known as the Burnett equations, improve the agreement
between calculated shock profiles and experiment. However, for
some formulations of these equations, the solution breaks down at
a critical Mach number. In addition, certain terms in the Burnett
equations allow unphysical effects in gas flow. A modified kinetic
theory has been proposed by Woods (An Introduction to the Kinetic
Theory of Gases and Magnetoplasmas, Oxford Univ. Press, Oxford,
1993} which eliminates the frame dependence of the standard kinetic
theory and corrects some of the second-order terms. This article
describes a novel method devised to solve the time-independent
conservation equations, including the second-order terms, The
method is used to solve the shock structure problem in one dimen-
sion. It is based on a finite difference glebal scheme {FDGS), in
which a Newton procedure is applied to a discretized version of the
governing equations and boundary conditions. The method is first
applied to the Navier-Stokes formulation of the shock equations.
It is then successfully used to integrate a modified version of the
second-order equations derived by Woods for monatomic gases,
up to a Mach number of 30, Results of the calculations are compared
with experimental data for Argon gas flows characterized by up-
stream Mach numbers up to 10, The agreement is good, well within
the data point spread. The FDGS method converges rapidly and it
rmay be used to study other problemns of the same general na-
ture. © 1995 Academic Press, Inc.

1. INFRODUCTION

Shack wave structure is a subject of continuing interest. Tt
is considered, for example, in the analysis of certain hypersonic

flow situations. The problem is also studied to test second-
order theories based on the Boltzmann cquation. One such
theory has been developed by Woods [2] to replace the Burnett
equations. This new formulation is employed in this article
to examine shock wave profiles, determine the shock wave
thickness as a function of the Mach number, and compare this
quantity with experimental measurements. The second-order
shock wave equations are solved using an original finite differ-
ence global scheme, which relies on a discretized version of
the governing equations and boundary conditions, and a global
Newton iteration procedure. This approach is suggested by our
experience in flame and reactive flow calculations (see, e.g.,
{3}, and it uses a scheme initially devised by Smooke [4].
However, the application to the shock structure problem is
not as straightforward as it may seem. To devise a successful
integration scheme, it is important to understand some of the
peculiar features of the problem. This may be achieved by
examining the shock wave structure with the Navier—Stokes
equations. The Navier-Stokes formulation is known to yield
incorrect shock profiles even at moderate Mach numbers, but
it provides an excellent test problem. A phase plane analysis
ol this case provides puidelines or the discretization scheme
adopted in the finite difference global solution method, desig-
nated from here on as the FDGS method, The Navier—Stokes
shock structure is also used to check the present sofution proce-
dure. This is accomplished by first calculating the shock profiles
with a more standard path integration in the phase plane and
comparing these solutions with those obtained from the
FDGS method.

The shock structure equations are presented in Section 2. A
phase piane analysis of the Navier—Stokes shock structure. is
carricd out in Section 3. The path integration scheme deduced
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SECOND-ORDER DESCRIPTION OF SHOCK STRUCTURE

from the phase plane analysis is briefly described in Section
4. The finite ditference global solution method is then intro-
duced in Section 5, and results obtained with the two
integration schemes are compared in Section 6.1. Shock
profiles obtained from a modified version of the second-
order formulation derived by Woods are discussed and the
shock thickness deduced in this case are determined as a
function of the upstream Mach number (Section 6.2). A
comparison with experimental measurements of shock wave
thickness is then carried out.

2. SHOCK STRUCTURE EQUATIONS

2.1. General Expression of the Second-Order Fluxes

At each point in space and time, the state of a monatomic
ideal gas flow is determined by the velocity v, the temperature
T, and the density p. The pressure p obeys the perfect gas law,

p = pRT, (N

where R = k/m is the gas constant, k, is the Boltzmann’s
constant, and # is the molecular mass. Specific heats at constant
volume and pressure are denoted ¢, and c,, respectively. A
monatomic ideal gas is characterized by

¢, =8R, c¢,=1%R, 2)
such that the isentropic constant -y, defined as the ratio of ¢, to

c,, is equal to §. The speed of sound ¢ is given in the medium
by the simple relation

3

Il
.{
h=Na~

The conservation equations for momentum and energy in-
clude a viscous stress tensor II and a heat flux vector Q.
These transport terms may be obtained through the classical
Chapman—Enskog expansion in Knudsen number of the Boltz-
mann eguation:

=019+ 1% + 112 + .., (4a)
Q=09+ Q"+ Q¥+ .. {(4b)
At zeroth order, this procedure gives
m® =0, (5a)
QY =4, (5b)

Substituting these fluxes in the conservation equations gives
the Euler equations.
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The next approximation gives

oo = —2ué,
Q¥ =~k VT,

{(6a)
{6b)

where € = ¢ — dtr(e)1, e = Vv + ‘Vv), and p and k are,
respectively, the viscosity and the heat conductivity of the gas.
For a monatomic gas modeled by point centers of force, the
kinetic theory leads to a viscosity proportional to 7° and the
Prandtl number Pr = uc,/k is a constant equal to §. The tempera-
ture exponent s is given by

(7

where » is the power index of the inter-molecular force law.
For argon gas at NTP, v = 7.5 is cited by Chapman and Cowling
[1] based on early viscosity data. Recent work by Lumpkin
and Chapman [5] suggests that » = 9.0 is a better approxima-
tion, which is confirmed through systematic calculation of
shock wave profiles. The conservation equations, together with
the fluxes (6), define the Navier-Stokes equations.

At second-order, the classical BGK expansion of the Boltz-
mann equation leads to the accepted form of the Burnett equa-
tions:

<

1 =
ng>="“;-[a,, V.vé + &, (Dé — 2 Vveé)

+ &RVVT + %Vp VT
- R . 75
+w51—FVTVT+w6e-e], (8a)

2
Qp =_~Rf‘p_ I:QI V-vVI+ (DVT —Vv.VT)

+93§vp.3+aqrv.8+ 365VT-8], (8b)

where D is the convective derivative, and the constant coeffi-
cients are:

@ =0, @;=3s, a=28,

:%: 03=—3, 94=3, 65=¥+.§‘. (9)

ml=%(2_5)= w =2, E)a=3,

In order to determine the shock wave structure in one dimen-
sion, Lumpkin and Chapman [5] solve the full time-dependent
conservation equations subject to the Rankine—Hugoniot jump
conditions satisfied at each end. They iterate the hyperbolic
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flow equations using a modified MacCormack method until a
steady state is reached and there is no further change in the
shock profile. As Zhong et al. [6] showed, the Burnett equations
applied in this manner are unstable to small oscillations in the
solution. The problem is solved by augmenting the Burnett
equations with selected third-order terms until a stable solution
can be shown to exist. The shock thickness values obtained for
argon show reasonable agreement with experiment; however,
the full third-order equations (‘‘super-Burnett’") are unstable
in the same way as the Burnett equations. Numerical conver-
gence can only be assured by including additional higher-order
terms, although the exact form of these extra terms is still under
investigation (see, e.g., [7]).

Woods [2] has suggested that the second-order terms derive
from an inappropriate frame-dependent formulation of the BGK
expansion, Inconsistencies become apparent when the accepted
form of the Burnett equations is examined more closely. One
finds that some of these second-order terms are consequences
of not properly distinguishing between convection and diffu-
sion. This failure arises in the initial formulation of the kinetic
equation describing the evolution of the velocity distribution
function, not in its expansion method of solution, Diffusion is
due to molecular agitation superimposed on a reference frame
that not only has the speed of the fluid element, but which also
accelerates and spins with it. Spurious terms in the Burnett
equations arise because standard kinetic theories, like those due
to Boltzmann and Fokker-Planck, ignore fluid accelerations,
These theories are valid only to first-order in Knudsen number.
As an example of the ‘‘spurious terms,’’ the expression (8b)
indicates that even in the absence of temperature gradients,
heat flux can be generated through fluid shear alone; this appears
to have no physical justification.

A new approach to kinetic theory has been developed by
Woods [2]. By incorporating fluid accelerations, it eliminates
convective terms from the second-order transport equations,
and the viscous stress and heat flux become

2 == —_— 000
my =% [E{), V. vé +m,RVVT + &JSI—;VTVT + Eb(,e-e},
P
(10a)
Q@:R%%avwvr+&wvr—nxvn+3avra,

(10b)
where £ = 3V X v, the fluid spin, and where the constants are
w = %(4 — 5),

6 = LE(% —5).

=3, ws=35, w;=06,

(115

92':4715, 05=§4§+S'
2.2. The One-Dimensional Problem

Consider a planar stationary shock wave established in the
one-dimensional flow of a monatomic gas between supersonic
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upstream conditions (subscript 1) and downstream conditions
(subscript 2). The one-dimensional flow of the gas is governed
by the conservation equations

pu = Mg, (12a)
p+ pucA2 + = pg, (12b)
2
pu (cpT+ 5‘2~) + um + g = mohy, (12¢)

where my 1s the mass flow rate, p, is the stagnation pressure,
hy is the stagnation specific enthalpy, and where 7 and g are
the components of the stress tensor and of the heat flux in the
flow direction x. Using Eq. (12a) and tha perfect gas law (1),
this set of equations reduces to

—i‘—:rr=RT+u2—££u, (13a)
My Ry
i w | py
——g=c,T—=+"—u— hy {13b)
My 2 My

The Navier—Stokes transport terms become, in one dimension,

=32 (142)
q" = —k%. (14b)

In the second-order terms, even when the flow is unsteady,
the time derivatives may be eliminated using the zeroth order
equalities arising in the conservation eguations:

pDv =-Vp,
DT = —(y— DTV-v.

(152)
{15b)

Substituting for the convective derivative from Egs. (15), we
obtain the one dimensional expressions of the second-order
fluxes, as used by Lumpkin and Chapman [5],

2u . T. 1. (au)z
) — 2 —_ il i
=3 [(‘”* 3""’+3°”6) ax

~ - a* ” ~  RapaT
~ @ = @R — @ - @) R

p ox dx
-~ -~ R{aTV
+ (wy + ws) T (a)

~ RT T RT#
+ ol (2) - 5,810

= 1
p* \ox p 9x* (162)
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z ou aT
q§)=R%|:(9 _‘92'1'2034'285)_”_

3 dx @
2 2 TE)p du
3 (th— 0.) T 3 e ax] (16b)

while the expressions derived from Woods® formulation can
be written

2utl (. 1. u\? | . AT Ty
p=="C + Z) +@R—+
v 3p [(w, 3w6)(dx) iR ax? ©s T ax

(17a)

) 2 5 dudT 2 0%u
q{g)=R%[(el—§92+zej)aa— 392Ta—]. (17b)

The exact definition of the convective derivative is D =
d/et + vV, which would reduce to D = u(d/dx) for steady one-
dimensional flow, However, Welder and Chapman [7] point out
that the Burnett equations are unstable if this exact definition
is used. Through the Euler equations (15} or the Navier—Stokes
equations, different expressions for the convective derivative
acting on VT can be obtained. We use the zeroth order (Euler)
formulation, as higher order forms introduce additional viscous
terms into the overall second-order equations, This further com-
plicates the system of equations to be solved and would not
necessarily improve the accuracy of obtained solutions. For
simplicity the zeroth order formulation is used, and this will
be shown to give good results.

In what follows, the shock structure will be examined using
the expressions (17) in combination with the basic conservation
relations (13) and the first-order fluxes (14). It is interesting to
note that the energy equation takes a form which is analogous
to the Korteweg—de Vries equation. It is known that the KdV
equation exhibits shock profiles modulated by oscillations (see,
e.g.. [8]). We would, therefore, expect the shock curves obtained
through solution of these equations to show some mild oscilla-
tions. This will be discussed further in Section 6.2.

2.3. The Non-Dimensional Equations

It is convenient to replace the conservation equations by
dimensionless forms. To this purpose we use the following
minimal set of reference quantities: the speed of sound ¢, the
pressure p, the heat at constant pressure ¢, and the vis-
cosity .

One may then define a complete set of reduced variables,

- = — - ef =
u=ciit, p=pp, P="ab r=-2T.
(18}
Cpi —
@ = i, k=#—l',rﬂ.t-c, x = AF,
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where the upstream mean free path A, is used as a reference
length-scaie. A suitable measure of A, is

» =E1V2RT,
4

(19}

which is close to the standard Maxwellian definition of mean
free path. This may also be expressed as a function of the
reference quantities:

A = B9 (20)
f4
With these notations the fluxes become
T=Vy2pw, (21a)
Y ap
= Vyi2 7, 21b
q y_l pr 27 (21b)
with
_ 4_di 2 @ m dit
=——g——+= - +
T3 3M1\/_2yf|i(wl swﬁ)(m)
~ dT @ (dT\*
Tt o=+ == 22
Pt T df)]’ (222)
__ _dT  y—1 Prj® a[(
g=—u—+— = —=8 + 240
&y MNVIyT T
didT 2 ,-d%
Lo —ZeT— 22
d dt 3 dx:| (226)

Introducing these expressions into the reduced set of Egs.
(13), we obtain

- i =T+ i’ — poit, (23a)
M, V2y ’
1 _ _2 .
- - +(y—1 —h 23b
Pr i, ‘ﬁq T #:+ (y — Dpoit —hy, (23b)

where the upstream Mach number M, = u,/c, and where

1
=——(1 +yM} 4
o= 3 (LMD, (242)

E,J=1+"’21M2 (24b)
3. PHASE PLANE ANALYSIS OF THE
NAVIER-STOKES EQUATIONS

To understand the specific difficulties of the shock structure
problem, it is worth examining the shock equations in the phase
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plane. Such an analysis was conducted in the early work of
Ludford [9], and an excellent synthesis of the main results is
presented by Hayes [10]. The purpose of this section is to supply
the conclusions which are useful in the numerical solution of
the present problem.

3.1. The General Solution

When considering the first-order expressions of the fluxes
(6), the system (23) becomes

4

dii = -

EE =T +a - pyir, 254
3M1\/_ dx Po (254)
L Sy ) U Tl PP SN I
e, le#dx T 5 H*+ (y — Dypet — hy. (25b)

Hence the monotonic solutions of system (25) are also solu-
tions of the equation:

d{ 4Pr_ g(u T) 26)
di ~ 3y " @,y
where f(iZ, T) and g(ir, T) are the right-hand sides of Egs.
(25a) and (25b), respectively. In the phase plane (i, T), the
solutions of system (25) are connected by integral curves given
by the first-order differential equation (26). The spatial evolu-
tion may be retrieved by the integration of equation (25a):

&k _ 4  pa
di M 2yf@a, T)

(27)

However, the upstream and downstream states are stationary
points of the system (25) because

fi@, T)=0, g, TH=0 Vi=12, (28)

and Eqgs. (26) or {27) cannot be used to start the integration

process. Thus any marching integration scheme must be initial-

ized by an expansion of Egs. (25} around one of the states 1

or 2. Introducing perturbations of the stationary states:

g=u,+81, T=T,+96T, (29)

and looking for exponential solutions of the form

exp{r;(3M |, V2y/4p;)x}, we obtain a linear homogeneous
system:

6T + (2 — w)it; — pol 8 =0,  (300)

—(y —1)(#; — py) e = 0. (30b)
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This system has non-trivial solutions if and only if x; is equal
to one of the two values

—b, = Vb — dac;
KE = i 31)
2a;
with
3y

a,——4pru,, (32a)
b= | 2L @ — oy + i, (32b)

i 4Pr i pU i]s
C.=(')’+ ])Ef_'}’ﬁo- (32c)

In order to determine the sign of x{*, we may use the follow-
ing relations:

a;> 0, (33a)

b= {34 1

b, [(4& )M, Ml]>o, (33b)
=Ml 33
G = —C= M, (33¢)

Under these conditions «F > 0, k5 < 0, and x5 > 0. This
indicates that the upstream point is an unstable node and the
downstream point is a saddle point. Consequently, any integra-
tion method must begin with the only stable solution of the
problem; starting from downstream in a direction defined by
the eigenvector (8iz, 8T )' corresponding to the negative eigen-
value &7 of the systern (30). The components of this eigenvector
are then related by

6T = —[(2 — k3 )it, — Pol 54, (34)

3.2. The Non-conductive Solution

The general solutions corresponding to finite Prandtl numbers
are limited by two particular cases. One of them is the non-
conductive case, for which the Prandt]l number is infinite. Equa-
tion (25h) degenerates into an algebraic relation which gives
the temperature directly as a function of the velocity. Equation
(27) is still valid and describes the spatial evolution of the vari-
ables.

3.3. The Non-viscous Solution

This is the other limit for the general solution, Since the
upstream viscosity cannot be used as a reference quantity, it
may be replaced by an expression involving the conductivity,
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2k\/3c¢, . such that the mean free path is now given by

A =2Re (35)
3 Cp| Pl
The non-dimensional equations (23) take the form:
0=f,T), (36a)
3 \/—
—=g@T
M, /2 =g, T). (36b)
The roots of Eq. (36a) are denoted i 5(T) = ¥p, =
Vi — 4T) and it can be shown that
7, =it Ty ifyMi< X1
_ 3—vy
i, =" (T)), (37
R T A
w,=u (Ty) ifyMi> .
3-y

There are two possible cases (if y = 1):

» if -);M2 < (3y — 1)/(3 — ) then the integral curve is given
by u+(T) from (i, T 1) to (i, Tz), and the spatial evolution
is given by Eq. (36b):

dx _ 3

\/; I
aT  2M, 2@, T)

* if yM] > (3y — 1)/(3 — +) then the preceding behavior
is still valid from (u.,,T ) to (& +(T1), Tg), and there is an
isothermal jump from u*(Tz) 0u,=u (Tz) (without spa-
tial evolution).

(38)

This isothermal discontinuity is characteristic of inviscid
shocks for Mach numbers larger than 1.34 (for y = 3.

4. A PATH INTEGRATION METHOD BASED ON THE
PHASE PLANE ANALYSIS

The methods which may be used to compute the two limit
solutions only require some adaptations of the general solution
scheme which we briefly describe in this section. Navier—Stokes
shock structures can be determined in the phase plane through
Eq. (26) using a process described in detail by Hayes [10] and
only outlined here. Downstream conditions are first determined
from upstream variables, using Rankine—Hugoniot relations
(the zeroth order shock relations). The velocity domain is then
discretized in N subintervals:

o = iy,

(39a)

G,=i,  + 066, ¥Yan=1,..,N. (39b)
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A uniform velocity step is adopted except in the immediate
neighbourhood of the downstream point:

=]

_LTQ

8t = A',_ B (40a)
8, = 150 O, (40b)
8, = %5 o, {40c)
S, =68t ¥Yn=3,.,N (40d)

Since the downstream point is a singular point for Eq. (26),
the first step from that point must be achieved analytically. It
is adequate to use a small increment for this step as specified
in Eq. (40b) and progress in the direction of the eigenvector
defined by Eq. (34):

T() Tz, (413)
Tl = To + (o — @))[(2 — x2)de — Po). (41b)
Equation (26) is integrated from thereon according to
f. =7 + 420, g(”"’ﬂé‘,m Vrn=1,..N—1, (42)
3y " @, 1)
and the spatial evolution is given by
2 =0, (43a)
& =0Q, (43b)
PPN SIS 11 (1 L7 VRV S S VR
3‘P‘/Il 2’}'f(ﬁ,;, Tn)
(43c)

Computations have been performed with N = 101 subinter-
vals. This number was sufficient to reach the spatial conver-
gence of the solutions. Figure 1 shows the phase plane and

6 T ¥ T T
Point 2 ] ] ' -
5+ _
[ < {monviseous) -
4 |- .
E;-'E - -
> 3 _
E"'-t - -
2l -
L [—Pr=273 i
— .. M -
i 1 I i I L l POlnt} |

2 3 4 5
urle

FIG. 1. Representation of the inner shock structure in the phase plane.
Variations with the Prandil number.
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T/vT,

— PI’ = 2 / 3
------- Pr=1
e TION-CONductive

u/c,
i
T

FIG, 2. Spatial evolution of the temperature and velocity in a shock wave,
according to the Navier—Stokes equations.

displays the integral curves corresponding to different solutions:
the non-conductive case, the non-viscous case, the general cases
for Prandtl numbers equal 1 and 5. The last value corresponds
ta the monatomic gas case. The characteristic features indicated
in Section 3 are effectively retrieved:

* the general solutions are limited by the two extreme cases
{the non-conductive and the non-viscous);

* the non-viscous solution presents an isothermal jump;
* the integration is performed from point 2 to point 1.

Figure 2 represents the spatial evolution of the temperature
and velocity for an upstream Mach number equal to 5. As the
Prandt]l number increases, the shock becomes steeper because
the thermal diffusion is weaker. The shock thickness relative
to the upstream mean free path is very sensitive to the
Prandtl number.

5. THE FINITE DIFFERENCE GLOBAL
SOLUTION METHOD

5.1. Discretization and Boundary Conditions

The main difficulty with the previous method is that it is not
easily extended to the second-order equations, because the order

REESE ET AL.

of the problem precludes a phase plane analysis. While the
linear analysis carried out near the downstream point may be
used to start the integration, the results obtained exhibit un-
wanted oscillations (see, e.g., [11]). We propose using a finite
difference global solution scheme with well-posed boundary
conditions to solve the nonlinear system. This system consists
of two ordinary differential equations involving the first and
second derivatives of velocity and temperature. Thus two
boundary conditions are needed for the velocity, and two for
the temperature. It can be noted that there is nothing in the
downstream nor in the upstream conditions to fix the location
of the shock. In other words, if [#(x), 7 (¥)] is a solution of
the system (23} which converges to the downstream conditions
when ¥ — —o and to the upstream conditions when ¥ — + oo,
then [i#(X, + X), T(x,+ %) is another solution for all real
values of ¥,. Hence, to ensure the uniqueness of the solution,
another condition must be added and one of the boundary
conditions has to be eliminated. Finally, the following condi-
tions are associated with the system (23)

1_1)[110 gx)=1u,, (44a)
I]irj}m i(x)=1i;, (44b)
lim Tx)="T,, (d4c)

T(X,)=HT, + Ty (44d)

where X, is an arbitrary real value. When considering the
Navier—Stokes case, the conditions (44a) and (44¢) overdeter-
mine the system (23}, since the second-order derivatives of the
temperature and velocity are not included in the fluxes; hence,
these conditions are removed. This choice is suggested by the
phase plane analysis of the Navier—Stokes shock structure and
the remark on the uniqueness of the solution.

The spatial domain is chosen to be wide enough to contain
the entire shock structure (typically, 30 mean free paths) and
it is discretized with a mesh (£,, n = 1, ..., N) which is refined
near the center of the domain £,, m = N/2. The arbitrary real
value ¥, is chosen equal to £,.

At the point £,, the boundary condition is written

i — i, =0, (45)
and Eq. (23b) is discretized using first-order accurate non-
centered finite differences:

3} 4 ”

Ay iy — 5 _ —

— ] === =u,T 4
(d}?)l P fors =i, T, (46a)
o~ (ﬁ3—ul_u2"ﬁ1)

d*u -8 BH—-%

=] =2 46b
(de)l (£, — %) ( )
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At the points £,, n = 2, ..., N — 1, Egs. (23) are discretized
using second-order accurate centered finite differences:

xnl

— X n+l — X
A S!:—l) -
T Xy xn Xn—1

dAﬁ N
s n ” n
(?d.})n = [(sw = 84 ;R + (5, —

(fn+| - f,l,]) for S_ = IT, T., (473)
dZS—, §n+l _ §n §n —§ —1
i = 2 —_ " A 2 B
(df2 . [X«HH _ xAn x‘,, — f,;—l (an X, 1)
fors =i, T, (47b)

except for the point £, for which the temperature equation (23b)
is replaced by the relation

T, +T)=0 (48)

At the point ¥, the downstream conditions are written
y— i, =0, (49a)
~-T,=0, (49h)

except in the Navicr—Stokes case, for which the conditions (45)
and (49b) are replaced by first-order accurate non-centered
finite difference versions of Egs. (23).

5.2. Method of Solution

The set of unknowns may be treated as a vector U =
n=1, ..,

(U.)',
N, whose elements are 2-component vectors U, =
(d,, T,¥. The discrete problem consists of solving a non-
linear system,

F(U) =0, (50)

where F is an N-vector F = (F,), n = 1, ..., N, whose elements
are 2-component vectors F (U = [F,, (1), F,,{U)])" such that
foraln=1,.,N -1,

] . (d
Fall)=— o \/E_ﬁ"{_ () (ﬁ
1 Y n

(5la)
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Fo(l) = —WV {P«(T)( )

y—1Prip (T2 4, ( )( —) (a’f
+ — 9_— 2
Y M\/_Tl: i 6.+ 26, dx [a\dX [

5o (dg_) } &

— (y = D) Pty + ho, (51b)
except for n = m, for which
FUy=T, 3T, + Ty (52)
and
FoUy=4d,—u,, {(53a)
Fu(U) = dy — i, (53b)
Fo(Uy=T,—T,. {(53¢)

In the Navier—Stokes case, Eq. (51a) is retained at the upstream
end, instead of (53a), and Eq. (51b) is retained at the down-
stream end, instead of (53c).

This systen is solved in an iterative manner by the Newton
method. The jacobian of the non-lincar function F is evaluated

numerically. If the dependences of (a‘zT/d x ), and (a’zT/dvc s
respectively, on T, and Ty, are neglected (and similarly for
the second derivative of the velocity), the jacobian has the form
of a tridiagonal N X N matrix whose elements are 2 X 2 blocks.
Starting from an initial set of values U’ = (4°, T°), the following
system has to be solved at each Newton step,

@ i i+l N i
v U U) = —F(U), (54)

until the L, norm of F is small enough. Each block of the
jacobian is inverted directly, and a recursive algorithm is used
to solve the tridiagonal system (54).

The initial solution consists of hyperbolic tangent profiles
for ¢ and T, connecting the upstream and downstream condi-
tions. The mesh is adapted to obtain constant jumps in velocity
between two successive points. This is done with the profiles

o w,— i,

[ + —

ai=w,+n—1n N1’ (53a)
Te=7,+(n— 1)T2 _1;' {55h)
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forall m = 1, ..., N, on the mesh defined as

A -

1 £y — Qﬁﬁ_(ﬁ1+ﬁz):|

— th[—
2 1 T oL — i)

fo= 3G 2+
argth ——

(56)
with %, = 0, £y = 30, and A = 5 X 1072,

6. RESULTS AND DISCUSSION

6.1, Validation in the Navier—Stokes Case

[t is first appropriate to test the FDGS scheme in the Navier—
Stokes case. As the govemning equations (25} are only first-
order, two boundary conditions must be eliminated. The condi-
tions (44a) and (44c) on the upstream velocity and the down-
strcam temperature are replaced by the appropriate non-
centered discretized versions of the first-order equations. One
finds that only 10 iterations are needed for the Newton method
to decrease the L, norm of the residuals by 10 orders of magni-
tude. The spatial convergence is reached with N = 101 mesh
points.

Studies of shock structure are generally validated by compar-
ing the reciprocal density thickness with experimental measure-
ments. This thickness is conventionally defined as

t- e (8).

Figure 5 displays the results concerning the reciprocal density
thickness. It compares the solutions of the path integration and
FDGS methods and also shows experimental measurements
{12]. The first conciusion is that both methods give very close
results for the Navier—Stokes shock structure. The test confirms
the validity of the FDGS scheme with the boundary conditions
indicated above. The second conclusion is that the Navier—
Stokes results differ significantly from the experimental mea-
surements for Mach numbers larger than about 1.5. This only
confirms that the first-order Navier—Stokes fluxes do not ade-
quately describe the inner shock wave structure, Second-order
equations are needed, as is shown in the next subsection.

(57)

6.2. The Second-Order Results

The method described in Section 5 is now applied to the
second-order equations (23), as described by Eqgs. (51)-(54).
As for the Navier—Stokes equations, convergence is reached
within 10 Newton iterations. For Mach numbers larger than 8,
the computation must be initialized with an extrapolation of
the solution obtained at smatler Mach numbers. If care is taken
over this, the calculation remains quite easy, even for large
values of the Mach number (computations have been performed
up to a Mach number of 30). Solutions obtained for upstream
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Mach numbers equal to 5 and 10 are plotted in Figs. 3 and 4.
They show that the Woods second-order theory predicts thicker
shock waves than those determined from the Navier—Stokes
equations.

As was expected, the shock profiles show some oscillations
at the downstream end, mainly in the temperature profile. These
oscillations are independent of mesh size and discretization,
and so they must be regarded as part of the solution of the
second-order equations. They amount to some 3-4% of the
magnitude of the total difference between upstream and down-
stream temperature, but considerably less for the velocity pro-
file. At the far downstream, the oscillations decrease in magni-
tude until the stationary state is reached. Experimental work
does not report these oscillations; however, the experimental
data is accurate to within 1-2% (see [12]) and may not be
tuned to identify downstream oscillations in the temperature.
Other researchers in numerical gas dynamics report these oscil-
lations in Monte Carlo direct simulations of the monatomic gas
shock profile, although they have a smaller magnitude (see, e.g.,
[13]). The Monte Carlo simulations are assumed to accurately
model gas dynamics in the hypersonic regime we are interested
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FIG. 3. Comparison of the first- and second-order shock structures for
an upstream Mach number equal to 5. The solutions are obtained with the
FDGS method.



SECOND-ORDER DESCRIPTION OF SHOCK STRUCTURE

20 | LI L l TT1T 1T Tj T T I T 7 A T 171 T T 1TT —
E |- Navier-Stokes I/ A
- 4
L T, i
sk E
E ; Mach= 10} ]
10 s . Pr =2/3]4
C v = 9]]
: :
sk .
0_| i e ITII'i:'ll NP NN NN
0 5 10 15 20 25 30
x/l)
7 T T T 1 I LB I 1 F T ] LI [ L I T 1 r 1
- [ Navier-Stokes T
6 | — Woods H —
5+ —
& - fMach= 10 7
3 4 - Pr =2/3 | 4
£ v = 9 B
3+ ] -
2 _|
1 | | | | | I | I | I T A | [ 1 1 1 1 ' L
0 3 10 15 20 25 30
x/ A,

FIG. 4. Comparison of the first- and second-order shock structures for an
upstream Mach number equal to 10. The solutions are obtained with the
FDGS method.

in; however it is, at present, unknown what physical effect
gives rise to these oscillations.

As shown in Fig. 5, the shock reciprocal density thickness
is very close to the experimental measurements up to the Mach
number where measurements are available (Mach 10). Above
this limit our solution follows the experimental trend (Fig. 5).
The results obtained in this case demonstrate that the Woods
formulation as defined in this article constitutes a useful second-
order expansion.

One may ask if it is possible to define a model which would
not exhibit slight oscillations. An eigenvalue analysis of the
fluxes (17) indicates that the sources of oscillations in the shock
solution are the second-order derivatives. To understand this
effect in physical terms one may consider the one-dimensional
steady energy equation including the flux:

(58)

2 du dT 4T
g% = R% [(0, + 265)0!—13 + HZMEJ.

This flux is obtained from (17b), where the second-order deriva-
tive of the velocity is replaced by the second-order derivative
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of the temperature through the steady form of the Euler conser-
vation equation (15b). The second-order derivative of the tem-
perature gives rise to a third-order term in the energy equation
which takes a form analogous to the Korteweg—de Vries equa-
tion. Now, it is known that the KdV equation exhibits shock
profiles modulated by oscillations (see, e.g., [8]). This behavior
is avoided by taking &, = 0 and §, = 0 as confirmed by
systernatic calculations with various forms of the second-order
fluxes. Monotonic solutions are obtained when the second-order
fluxes are specified in this way. This is exemplified in Fig. 6.
The reciprocal density thickness calculated with the simplified
second-order fluxes is displayed in Fig. 5 with the label **simpli-
fied Woods.”” The results are as good as those of the complete
Woods formulation but the theoretical foundation of the simpli-
fied fluxes is less firmly based. This analysis indicates that: (1)
the second-order derivatives are responsible for the oscillations
in the shock solution; (2) these terms only weakly influence
the shock wave structure, and they may be neglected if one
wishes to obtain oscillation free shock profiles. For practical
purposes (like for full three-dimensional rarefied gas numerical
calculations), one would get nearly the same results without
the difficult second-order derivative terms. It is expected that
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FIG. 5. Shock reciprocal density thickness versus the upstream Mach
number. The experimental data are taken from [12].
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FIG. 6. Shock wave structure as described by the simplified Woods fluxes,
compared to the results obtained with the complete Woods fluxes at Mach 10.

the simplified fluxes will pose fewer numerical problems. These
forms may be recommended on these grounds and also because
they are easier to implement.

7. CONCLUSIONS

A second-order theory is used to describe shock wave struc-
tures. The equations obtained are solved with a finite difference
global scheme which has not previously been used for this type
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of problem. A set of simplified second-order fluxes is also
devised and recommended for three-dimensional numerical cai-
culations of hypersonic flows in the continuum transitional
regime. The results obtained in one dimension with the exact
and simplified fluxes are close to the experimental measure-
ments of the shock thickness in a monatomic gas for upstream
Mach numbers below 10. Beyond this value no experimental
data exists as yet, but a good theoretical irend is obtained.
The extension to a diatomic gas is quite easy, but much more
theoretical effort must be expended to deal with reacting mix-
tures.
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